Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)

Director: Gerald J. Meyer (University of North Carolina at Chapel Hill)

AMPED EFRC MISSION:

To Develop the Fundamental Molecular Basis for Solar-Driven Water Oxidation and Carbon Dioxide Reduction Catalysis.

RESEARCH PLAN:

Harness **molecule-material interfaces** for the synthesis of solar fuels, with an emphasis on the **fundamental energy science underpinning photocatalytically active materials**. We seek to understand how molecular catalysts and chromophores can be integrated covalently and noncovalently with oxide materials to achieve structurally well-defined photoelectrodes that efficiently couple light absorption with multi-electron fuel-forming reactions.

RESEARCH GOALS:

1. Interface Highly Conductive Oxides with Molecular Lightharvesting Dyes and Photocatalysts.

Highly doped transparent conductive oxide (TCO) nanocrystalline mesoporous thin films will be utilized for dye-sensitized solar fuel generation. We will achieve molecular control of interfacial dynamics and catalysis at conductive oxides by determining reorganization energies and reduction potentials associated with electron transfer.

2. Direct Multi-electron Flow at Photocatalytic Semiconductor Electrodes.

By controlling the structure of molecule-material interfaces, and by tuning electronic and protonic coupling at interfaces, we will identify and understand the basic principles that direct multi-electron flow between dyes, catalysts, and semiconductor oxides.

Research partners at UNC, University of Texas at San Antonio, and Georgia Tech

Dye-sensitized conductive (left) and semiconducting (right) oxide photoelectrodes.

Desired flow of electrons and protons at dye-sensitized semiconductor interfaces

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

I

The University of Texas at San Antonio[™]

