
UNC EFRC: CENTER for SOLAR FUELS

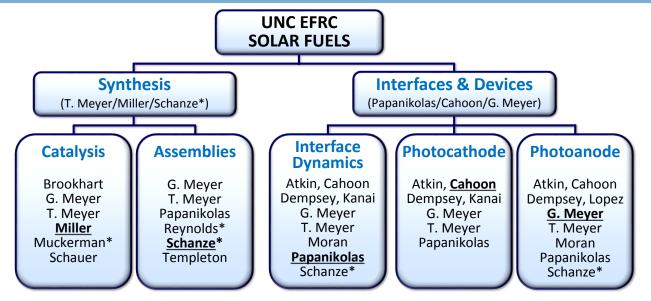
MISSION

The Center for Solar Fuels conducts research on the dye sensitized photoelectrosynthesis cell (DSPEC) for water splitting, and tandem cells for the reduction of carbon dioxide to carbon-based solar fuels

www.efrc.unc.edu

RESEARCH PLAN

- A modular approach is applied to design, test, and evaluate high efficiency DSPEC device prototypes for solar water oxidation and CO₂ reduction to formate or syngas H₂:CO mixtures
- Results are integrated from research on water oxidation, CO₂ reduction, light-harvesting chromophores and chromophore arrays, chromophore-catalyst assemblies, mesoporous nanoparticle semiconductor oxide films, and core/shell structures to develop efficient DSPEC device prototypes



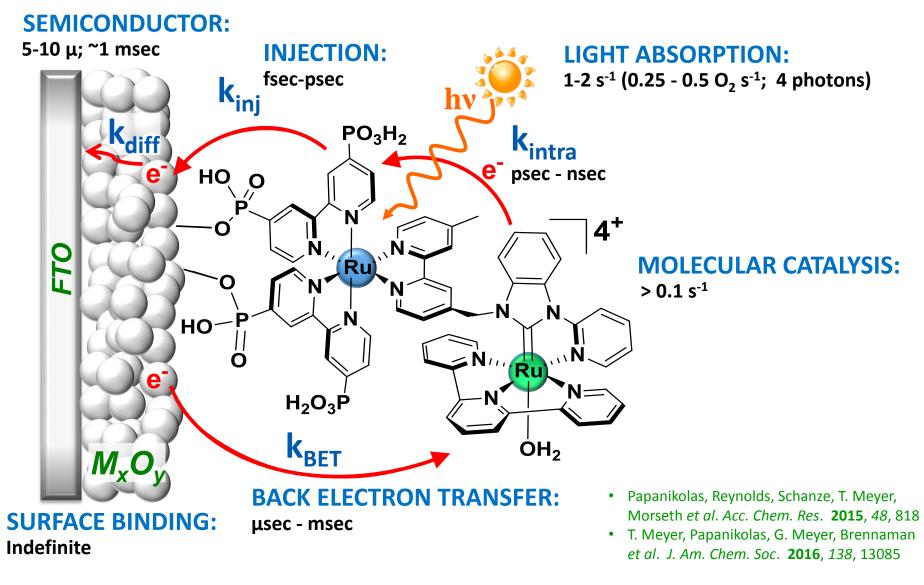
UNC EFRC TEAM-BASED RESEARCH

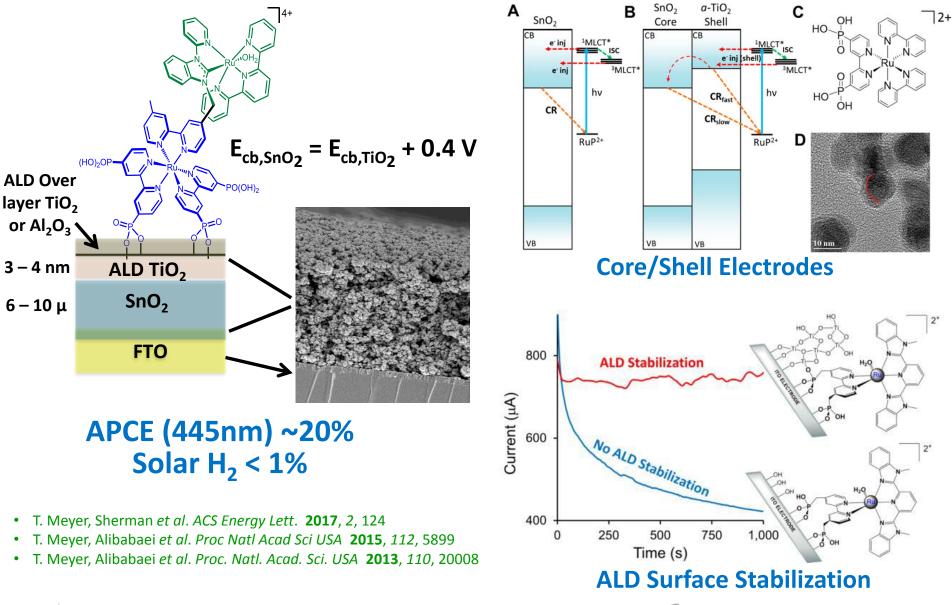
Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for Solar Fuels Production

INTEGRATED TEAMS

- Highly integrated, inter-disciplinary, cross-team memberships
- Cross-fertilization, inter-institutional collaboration & synergy
- Faculty-led, biweekly meetings, project oriented
- Continuous internal and external accountability and review

TEAM	TEAM MISSION & RESEARCH FOCUS
CATALYSIS	Catalyst development and mechanistic studies on solution and interfacial catalysts for water oxidation and CO ₂ reduction. Evaluation of catalysts in assemblies and device prototypes for photoanode and photocathode applications.
ASSEMBLIES	Design, synthesis, and characterization of molecular, oligomer and polymer chromophore-catalyst assemblies for applications in water oxidation and CO_2 reduction at <i>n</i> - and <i>p</i> -type semiconductors.
INTERFACIAL DYNAMICS	Dynamics of light-driven interfacial electron transfer in chromophores, assemblies, and chromophore-catalyst assemblies on semiconductor oxide surfaces.
PHOTOCATHODE	Design, synthesis and characterization of hole-transporting semiconductor nanomaterials, core/shell structures, and light-absorbing sensitizers for high-performance photocathode applications integrated with molecular catalysts for CO ₂ reduction.
PHOTOANODE	Optimization of solar-driven water oxidation at dye sensitized photoanodes.
THE UNIVERSITY	





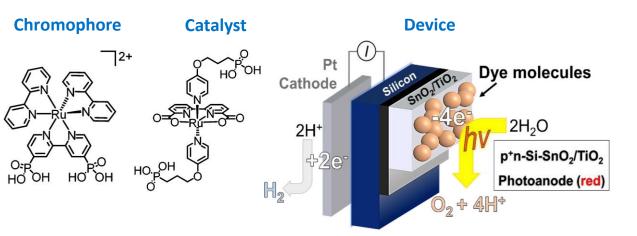
Office of

Science

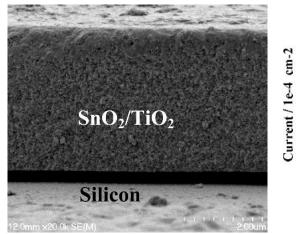
PHOTOANODES for WATER SPLITTING Core/Shell, Surface Stabilized Electrodes

THE UNIVERSITY of NORTH CAROLI at CHAPEL HILL

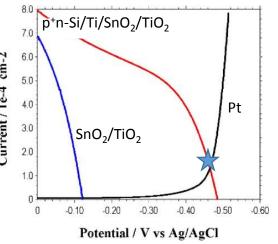
Georgialnstitute



Office of


Science

PHOTOANODES for WATER SPLITTING All-in-one Tandem Water Splitting DSPEC



Si/Ti/SnO₂/TiO₂

Unbiased water splitting

ACHIEVEMENT

Unbiased water splitting cell with molecular chromophores and catalysts combining mesoporous SnO_2/TiO_2 and a silicon p-n junction

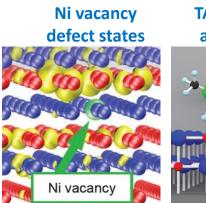
IMPACT

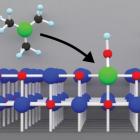
Combination of molecular chromophore-catalysts with conventional silicon represents a new paradigm for design of tandem water splitting cells

DETAILS

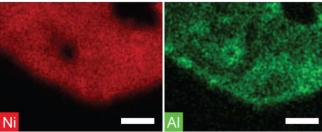
- Mesoporous SnO₂/TiO₂ films are derivatized with ruthenium-based chromophores and catalysts, which perform light absorption and wateroxidation catalysis
- Silicon p⁺-n wafers provide the additional photo-potential needed for water splitting, with proton reduction at a Pt cathode

T. Meyer, Cahoon, Sheridan et al. Nano Lett. 2017, 17, 2440



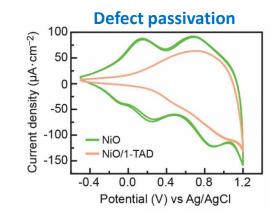


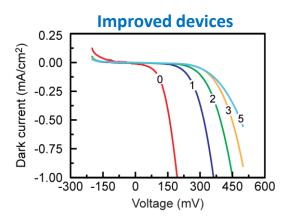
THE PHOTOCATHODE Passivating Photocathode Materials by TAD



Elemental mapping

ACHIEVEMENT


Selective passivation of Ni vacancy defects in the widely used cathode NiO leads to dramatic optical and bleaching of thin films and to large improvements in the performance of dye-sensitized devices.

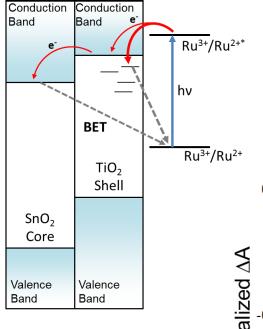

IMPACT

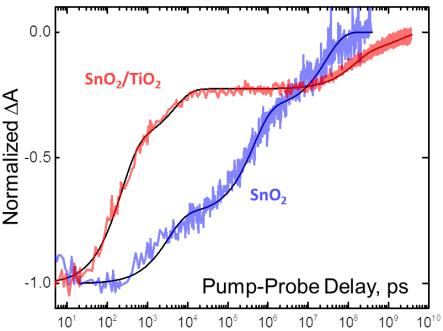
A new vapor-phase process termed **Targeted Atomic Deposition (TAD)** was used to passivate defects. The TAD process could be widely applied to defect passivation in semiconductor nanomaterials.

DETAILS

- First-principles calculations identified oxygen-localized defect states as a result of Ni vacancies
- Vapor-phase trimethyl aluminum, at a temperature too low for layered deposition, selectively reacted with the oxygen dangling bonds at defect sites, removing trap states and bleaching thin films of NiO

Cahoon, Kanai, T. Meyer, Nozik, et al. ACS Appl. Mater. Interfaces **2016**, *8*, 4754 Cahoon, Kanai, et al. J. Phys. Chem. C **2016**, 120, 16568


GeorgiaInstitute of Technology



UNC EFRC RESEARCH CAPABILITIES Photoexcited Dynamics: From fsec to msec

Through combination of transient absorption methods, UNC EFRC can follow photoinduced dynamics on timescales ranging from **fsec** to **msec**

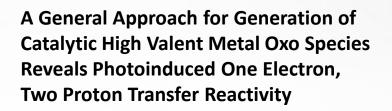
Example:

Observe combination of psec and msec recombination following injection on SnO₂/TiO₂ core/shell nanoparticles

- Papanikolas, T. Meyer, Gish et al. J. Phys. Chem. Lett. 2016, 7, 5297
- Papanikolas, Schanze, Reynolds, Morseth et al. J. Phys. Chem. B 2016, 120, 7937
- Papanikolas, T. Meyer, Bettis et al. J. Phys. Chem. A 2014, 118, 10301

UNCEFRE – A CENTER ETHOS

- Integrated Teams, EFRC IP MOU, Inter-Site Visits
- Annual UNC SERC Scientific Conference serc.unc.edu
- Annual Research Review (External Advisory Board)
- SharePoint Collaborative Workspace/Portal
- Orientation, Workshops, Training, Education, Outreach


CENTER for SOLAR FUELS TECHNICAL TALKS

Kirk S. Schanze H-I-1 Mon 3:00pm

John M. Papanikolas H-I-4 Mon 4:00pm

Taylor H. Moot, Lesheng Li H-IV-1 Tue 1:30pm

RESEARCH CENTER

Molecular and Polymer Chromophore-Catalyst Assemblies for Solar Fuels Production

Ultrafast Injection and Recombination Dynamics at SnO₂/TiO₂ Core/Shell and NiO Interfaces for Solar Fuels Production

Identification and Passivation of the Defect States in NiO for Photovoltaic and Solar Fuel Applications (Student/Postdoc Competition)

SOLAR FUELS UNC EFRC

CENTER for SOLAR FUELS POSTERS

CATALYSIS TEAM

Ying Wang Sergio Gonell-Gómez Water Oxidation and CO₂ Reduction Catalysis for Solar Fuels Production *PII-C-3 Tue 3:30pm*

ASSEMBLIES TEAM

Gyu Leem Ludovic Troian-Gautier Chromophore-Catalyst Assemblies for Solar Fuels Production *PI-H-5 Mon 5:00pm*

DYNAMICS TEAM Melissa K. Gish Lenzi J. Williams

PHOTOCATHODE TEAM Taylor H. Moot Lesheng Li

SOLAR FUELS UNC EFRC PHOTOANODE TEAM Renato N. Sampaio Interfacial Electron and Hole Transfer Dynamics of Dye-Sensitized Metal Oxide Architectures *PI-H-11 Mon 5:00pm*

Probing Photocathode Materials and Interfaces to Enable Tandem Dye Sensitized Photoelectrosynthesis Cells *PII-H-1 Tue 3:30pm*

Accessing the Photophysics of Water Oxidation Photoanodes *PII-H-11 Tue 3:30pm*

