Photo-Acidic and -Basic Transition Metal Compounds

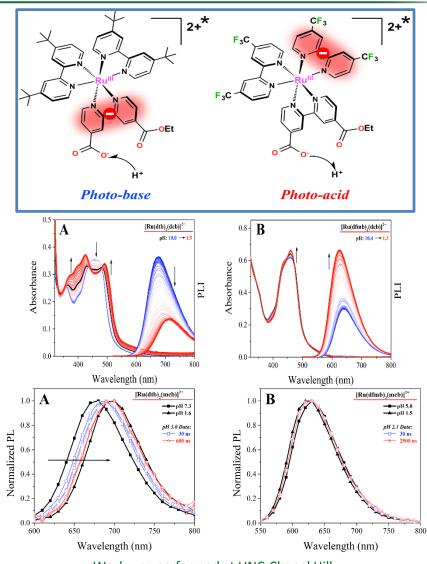
Scientific Achievement

- The first example where a single functional group could be made more basic *or* more acidic by light absorption was described.
- The first proton transfer kinetics for an inorganic excited state were reported.

Significance and Impact

- Control of excited states that can undergo proton and/or electron transfer reactions is important for applications in energy science.
- This class of excited states continues to be widely used at sensitized metal oxide interfaces.

Research Details


- For all dcb compounds, the ground state pK_{a1} ~ 2.1 and pK_{a2} ~ 3.0.
- For the mcb compounds, $pK_a = 2.3$ and $pK_a^* = 3.2$ (dtb) or 2.0 (CF₃).
- The excited state proton transfer rate constant was 6.0 X 10⁶ s⁻¹ (dtb) and > 10⁸ s⁻¹ for (CF₃).

O'Donnell, R.M.; Sampaio, R.N.; Li, G.; Johansson, P.G.; Ward, C.L.; Meyer, G.J. *J. Am. Chem. Soc.* **2016**, *138*, 3891-3903. DOI: 10.1021/jacs.6b00454.

Office of

Science

Work was performed at UNC-Chapel Hill.

ORTH CAROLIN

at CHAPEL HILL

