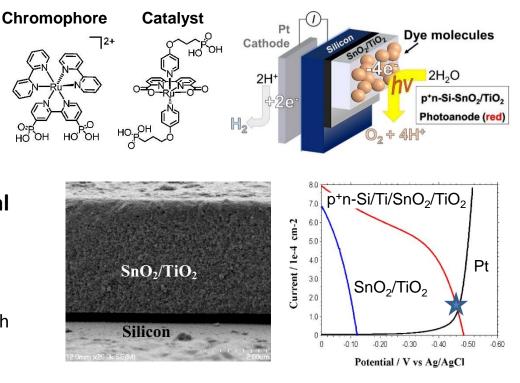
All-in-one Tandem Dye-sensitized Water Splitting Cell

Scientific Achievement

An unbiased water splitting cell with molecular chromophores and catalysts combining mesoporous SnO_2/TiO_2 and a silicon p-n junction


Significance and Impact

The combination of molecular chromophore/catalysts with conventional silicon represents a new paradigm for design of tandem water splitting cells

Research Details

- Mesoporous SnO₂/TiO₂ films are derivatized with ruthenium-based chromophores and catalysts, which perform light absorption and wateroxidation catalysis
- Silicon p⁺-n wafers provide the additional photopotential needed for water splitting, with proton reduction at a Pt cathode

M. V. Sheridan, D. J. Hill, B. D. Sherman , D. Wang, S. L. Marquard, K.-R. Wee, J. F. Cahoon, T. J. Meyer. "All-in-One Derivatized Tandem p⁺n-Silicon–SnO₂/TiO₂ Water Splitting Photoelectrochemical Cell" *Nano Lett.* ASAP Article, DOI: 10.1021/acs.nanolett.7b00105

Upper: molecular structures (left) of the chromophore and catalyst used to derivatize SnO_2/TiO_2 films, and device schematic (right) of the water splitting cell.

Lower: Cross-sectional SEM image (left) of the silicon/Ti/SnO₂/TiO₂ device, and voltammograms (right) of SnO₂/TiO₂ (blue), Pt (black), and p^+n -Si/Ti/SnO₂/TiO₂ (red) electrodes under 100 mW/cm² illumination

Work was performed at the University of North Carolina at Chapel Hill

