

Optimizing Excitation Energy Flow in Metal-Organic Framework Materials

David N. Beratan, Spiros Skourtis, Xiangqian Hu, Jiaxing Lin Duke University, UNC Energy Frontier Research Center

Kent, C.A.; Mehl, B.P.; Ma, L.; Papanikolas, J.M.; Meyer, T.J.; Lin, W. J. Am. Chem. Soc. 2010, 132, 12767.

Significance:

Doped metal-organic framework materials (MOFs) are promising for solar-energy collection and concentration.

Achievements:

- Discovered 1D energy flow pathways in Ru-Os MOFs;
- Lattice kinetic models describe experimental time-resolved emission @ Os doping levels;
- Now optimizing MOF structures for excitation energy efficiency and energy delivery.

II. Simulate:

Time-resolved emission with lattice master equations

