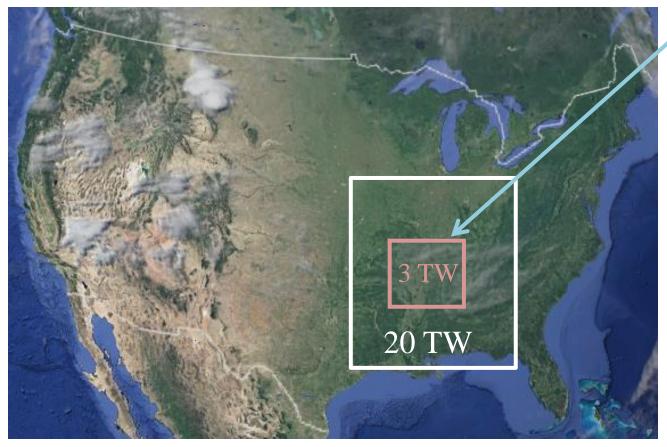

Research in the UNC EFRC for Solar Fuels

The Dye Sensitized
Photoelectrosynthesis Cell (DSPEC)

T.J. Meyer

UNC EFRC: SOLAR FUELS


DOE Yellow Team Presentation May 14, 2015

Solar Energy

~10,000 Times Current Energy Use. But......

Diffuse:

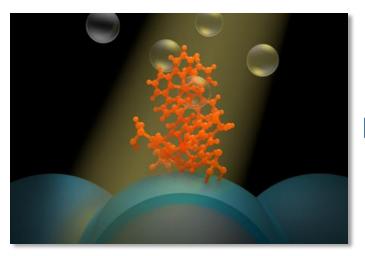
~60,000 sq. miles to meet current US power demands (3 TW)* 1,000 homes = 32 acres

Intermittent:

6 hours of useful sunlight per day

Requires Energy Storage

*at 10% efficiency, NREL. \$60 Trillion at \$400/m².


Energy Conversion <u>and Storage</u> with Solar Fuels Artificial Photosynthesis

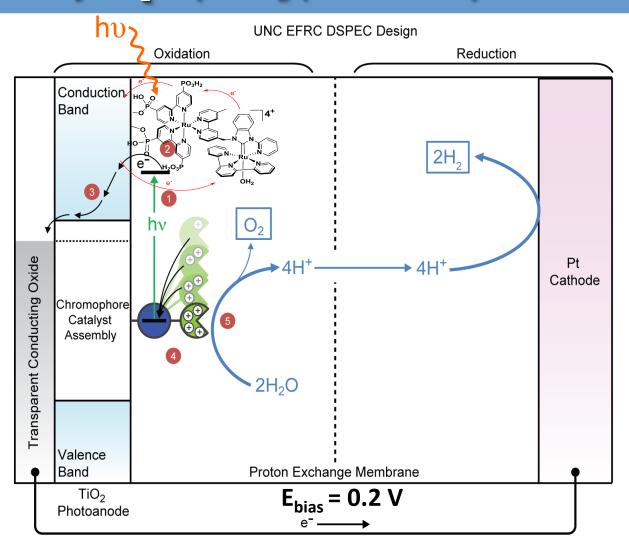
- Hydrogen, CO, natural gas, liquid hydrocarbons and oxygenates
- <u>Use the existing energy infrastructure</u>

2
$$H_2O + 4 hv \longrightarrow 2H_2 + O_2$$

($\Delta G^{\circ} = 4.92 \text{ eV}, n = 4$)

$$2 H_2O + CO_2 + 8 hv \longrightarrow CH_4 + 2O_2$$

($\Delta G^{\circ} = 10.3 \text{ eV}, n = 8$)



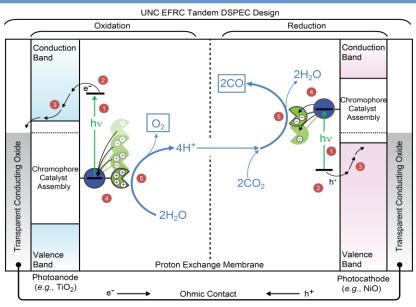
Dye Sensitized Photoelectrosynthesis Cell DSPEC DSPEC for H_2O Splitting (1974 \rightarrow 1999)

 $Ru(bpy)_3^{2+}(d\pi^6) + hv \rightarrow Ru'''(bpy'')(bpy)_2^{2+*}$ $Ru(bpy)_3^{2+*} + MV^{2+} \rightarrow Ru(bpy)_3^{3+} + MV^{+*}$

- KEEP IT SIMPLE!
- LET THE
 MOLECULES
 DO THE
 WORK.

Moss, Treadway, *Inorg. Chem.*, **1999**

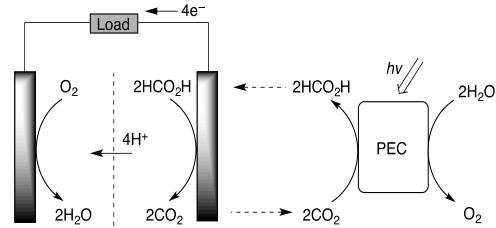
Song et al.


Pure and Appl.

Chem, **2011**, 749

Bock, Meyer, Whitten, *JACS*, **1974**, 96, 4710

Tandem DSPEC: CO₂ Reduction to Formate; Syn-Gas (H₂:CO) Bias-Free Water Splitting

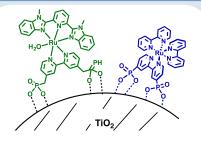


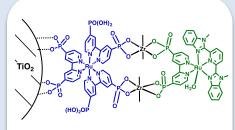
 CO₂/H₂O/H⁺ reduction to syngas (2H₂:CO)

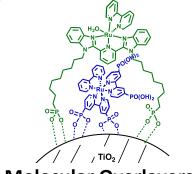
Syngas → CH₃OH → hydrocarbons by Fischer-Tropsch synthesis

- Tandem DSPECs for CO₂
 reduction and bias-free water
 splitting
- Integrated PEC/formate-oxygen fuel cell for off-grid energy conversion and storage

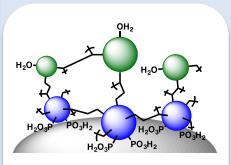
Photoelectrochemical Cell




Chromophore-Catalyst Assemblies Strategies (Kirk Schanze)

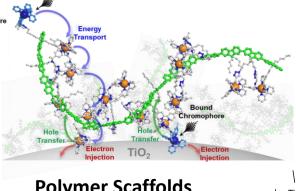

Co-Loaded

JACS, 2013, 11587 JACS, 2014, 9773

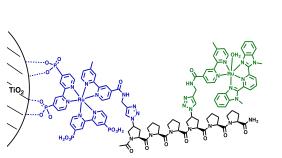

Layer-by-Layer

ACIE, 2012, 12782 Chem. Sci., 2014, 3115 *JPCA*, **2014**, 10301

Molecular Overlayers


Inorg. Chem., 2012, 8637

Electro-assembly

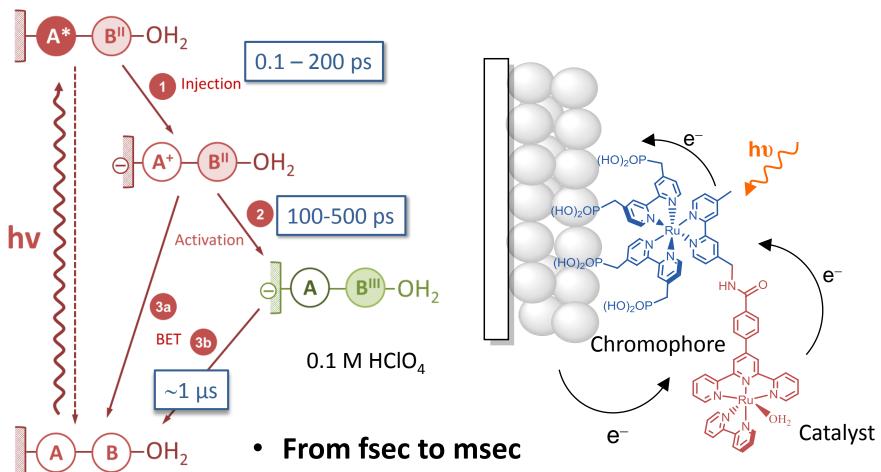

JACS, 2013, 15450 JACS, 2014, 6578

Polymer Scaffolds

Polym. Chem., 2014, 2363 JPCL, 2012, 2457

Peptide Scaffolds

JCPB, **2013**, 6352 JACS, 2013, 5250 Inorg. Chem., 2012, 11324 Inorg. Chem., 2014, 8120

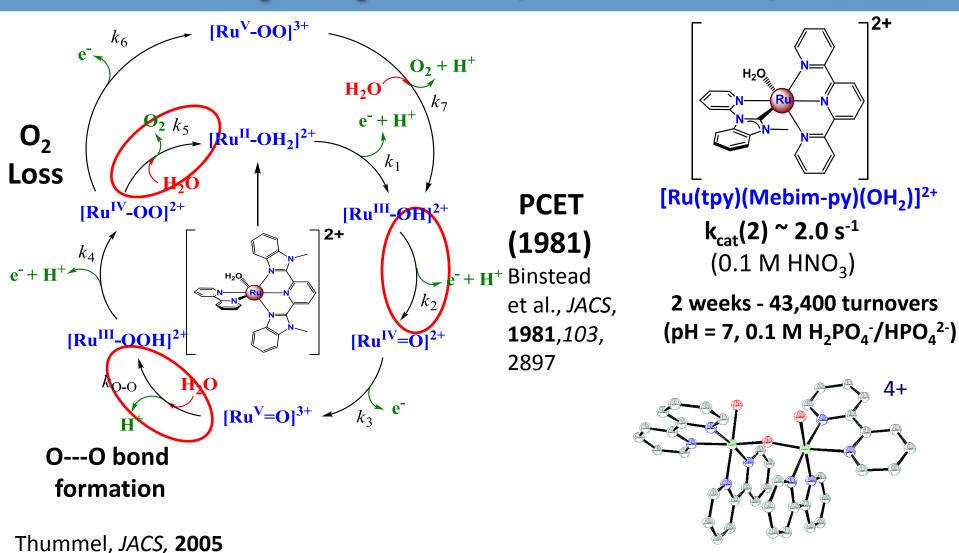

ACIE, 2009, 9473 Inorg. Chem., 2012, 6428 JACS, 2012, 19189 JACS, **2013**, 2080 JPPC, 2013, 24250 *ACIE*, **2013**, 13580 JPCL, **2011**, 1808

Pre-formed

Interfacial Dynamics on TiO_2 in Water. TiO_2 - $[Ru_a^{\parallel}-Ru_b^{\parallel}-OH_2]^{4+}$ (John Papanikolas)

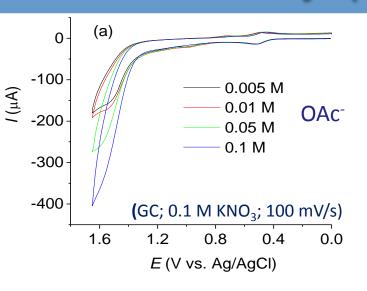
$[(4,4'-(PO_3H_2-CH_2)_2-bpy)_2Ru_a(bpy-NH-CO-py)Ru_b(bpy)(OH_2)]^{4+}$

Dennis Ashford



Single Site Catalysis of Water Oxidation, 2008 Mechanism. $2H_2O \rightarrow O_2 + 4e^2 + 4H^4$ (Blue Dimer – 1982)

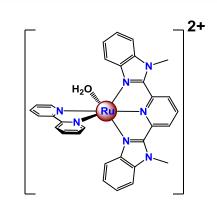
 $[(bpy)_2(H_2O)Ru^{|||}ORu^{|||}(H_2O)(bpy)_2]^{4+}$

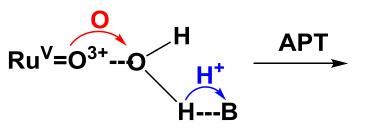


Concepcion, Chen, *JACS*, **2008**, **2010**; *PNAS*, **2010**, **2012**; *Inorg. Chem.*, **2010**Gersten, et al., *JACS*, **1982**, *14*, 4029

Specific Base Catalysis

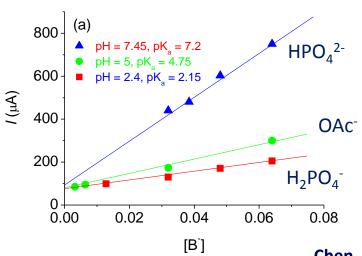
Atom-Proton Transfer (APT) and OH Attack





of $> 10^4$

2 weeks - 43,400 turnovers (pH = 7, 0.1 M $H_2PO_4^{-1}/HPO_4^{-2}$)

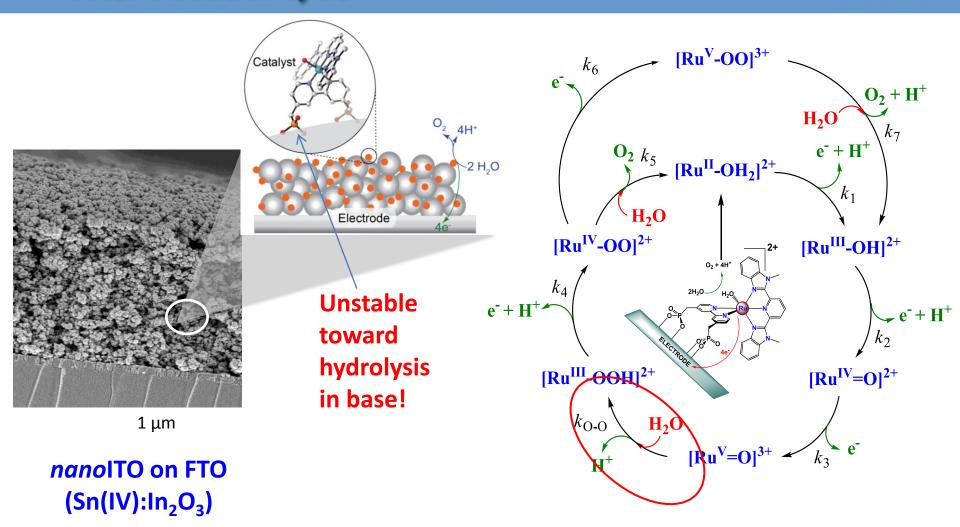


Ru^{III}-OOH²⁺ + ⁺HB

$$\{Ru^V = O^{3+} + H_2O \rightarrow M^{III} - O - OH_2^{3+}\}$$

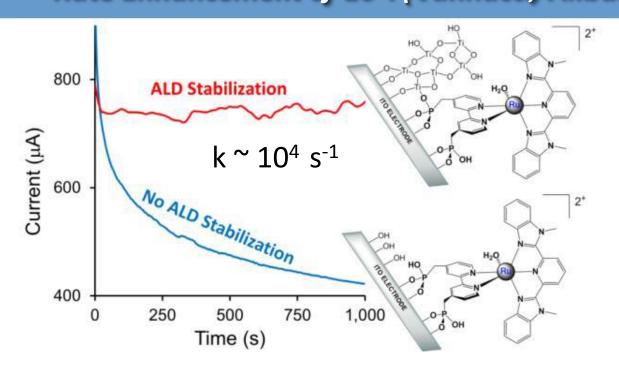
High pH. Direct OH - attack

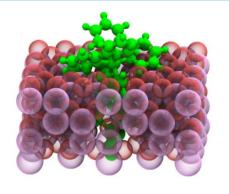
Chen, Meyer, Concepcion, Yang, PNAS, 2010; Tamaki et al., JACS, 2014



Surface Water Oxidation on nanoITO Water Oxidation Cycle

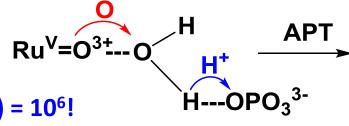
Z. Chen, P. Hoertz, *Dalton Trans.*, **2010**, 6950





Atomic Layer Deposition (ALD) Surface Stabilization Rate Enhancement of 10⁶! (Vannucci, Alibabaei, Hanson)

-RuP²⁺ (Al₂O₃) Alex Lapides, Chris Dares


 Ru^{III} -OOH²⁺ + HOPO₃²⁻

Water Oxidation:

$$k(pH 11; 1M PO_a^3))/k(pH1) = 10^6!$$

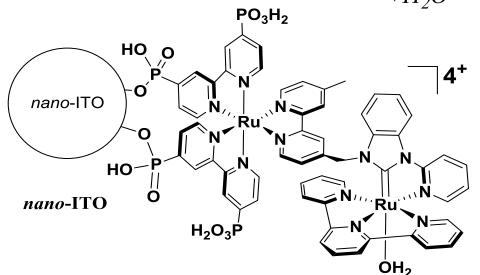
Atom-Proton Transfer

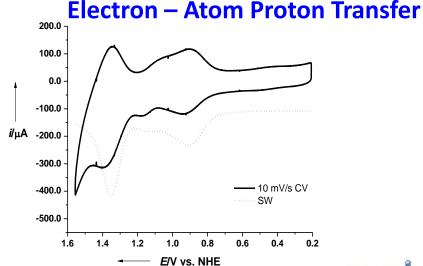
to PO₄3-; OH- attack

rasei

Chromophore-Catalyst Assembly Mechanism of water oxidation (Norris, Concepcion)

$$nano ITO-[Ru_{a}^{II}-Ru_{b}^{II}-OH_{2}]^{4+} \xrightarrow{-e^{-}, -H^{+}} nano ITO-[Ru_{a}^{II}-Ru_{b}^{III}OH]^{4+}$$

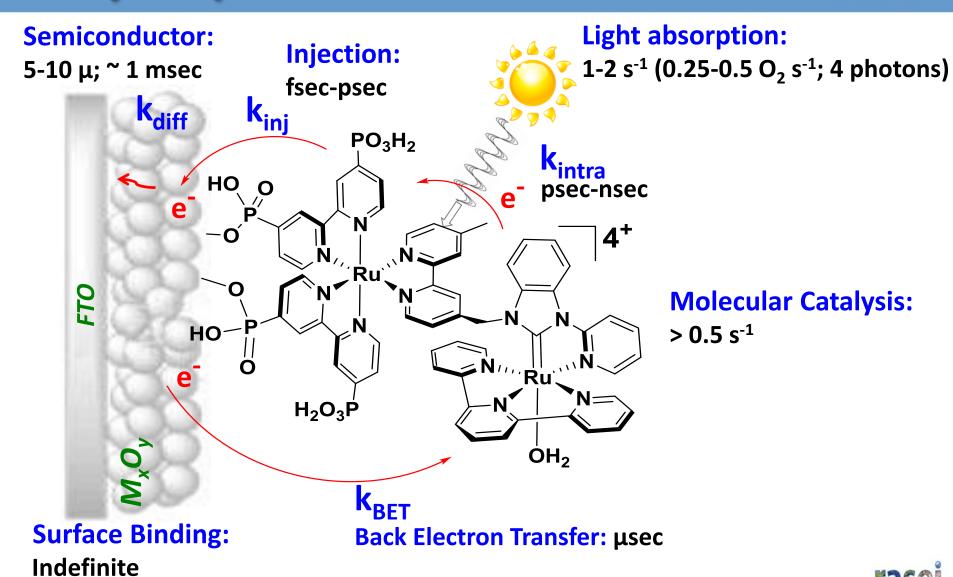

$$nano ITO-[Ru_{a}^{II}-Ru_{b}^{III}-OH]^{4+} \xrightarrow{-e^{-}, -H^{+}} nano ITO-[Ru_{a}^{II}-Ru_{b}^{IV}=O]^{4+}$$


$$nano ITO-[Ru_{a}^{II}-Ru_{b}^{IV}=O]^{4+} \xrightarrow{-e^{-}, -H^{+}} nano ITO-[Ru_{a}^{III}-Ru_{b}^{IV}=O]^{5+}$$

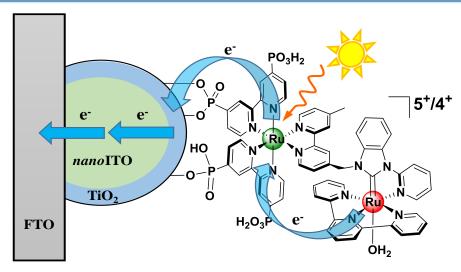
$$nano ITO-[Ru_{a}^{III}-Ru_{b}^{IV}=O]^{5+} + H_{2}O \xrightarrow{RDS} nano ITO-[Ru_{a}^{II}-Ru_{b}^{III}-OOH]^{4+}$$

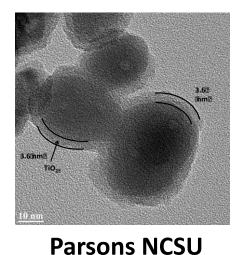
$$nano ITO-[Ru_{a}^{III}-Ru_{b}^{IV}=O]^{5+} + H_{2}O \xrightarrow{RDS} nano ITO-[Ru_{a}^{II}-Ru_{b}^{III}-OOH]^{4+}$$

nanoITO-[Ru_a^{II}-Ru_b^{III}-OOH]⁴⁺ $\xrightarrow{-H^+, -e^-}$ nanoITO-[Ru_a^{II}-Ru_b^{II}-OH₂]⁴⁺ + O₂

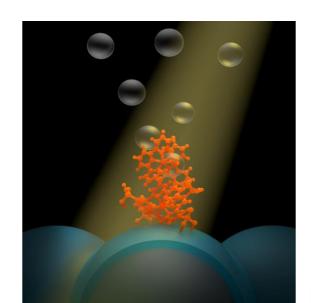


DSPEC Water Splitting: Timescales Interfacial Dynamics



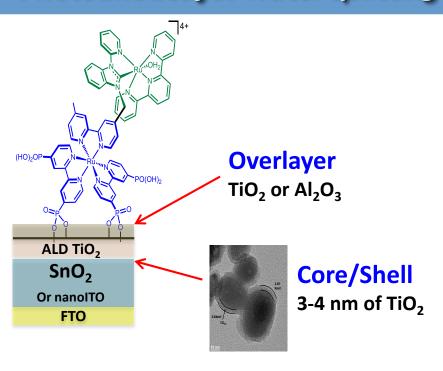


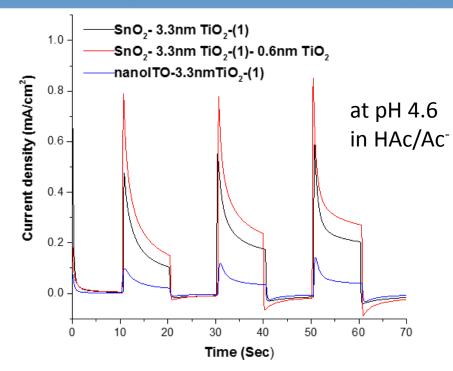
Solar Water Splitting. Atomic Layer Deposition Core/Shell Advantage (Alibabaei, Brennaman, Farnum)

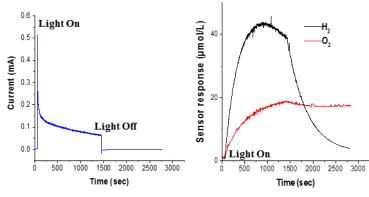


Core/Shell Advantage 3.6 nm shell nanoITO/TiO,

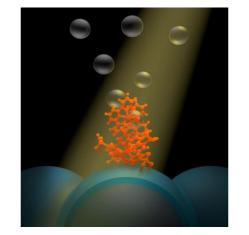
FTO | nano|TO/TiO₂- $[Ru_a^{\parallel}-Ru_b^{\parallel}-OH_2]^{4+}$ $\| Pt \|$ PtFTO | nanoITO/TiO₂-[Ru_a"-Ru_b"-OH₂]⁴⁺ + O₂ || Pt + 2H₂






Comparison: SnO₂/TiO₂ and nanoITO core/shells Photoanodes for water splitting (Alibabaei)

 TiO_2 (3.3 nm); Pt counter, 200 mV (vs Ag/AgCl) in 0.5 M LiClO₄

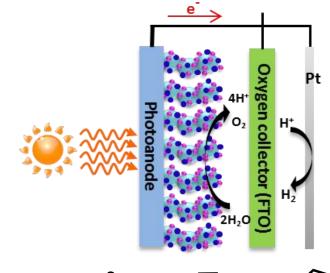

 $(455 \text{nm LED at } 46.2 \text{ mW/cm}^2, E_{\text{bias}} = -0.6 \text{ V})$

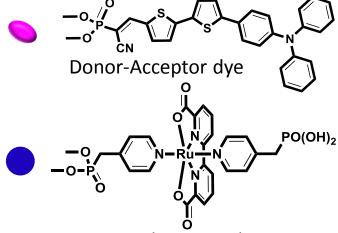
APCE (445nm)

<u>core</u> <u>APCE</u>

nanoITO 4.5%


SnO₂ >20%



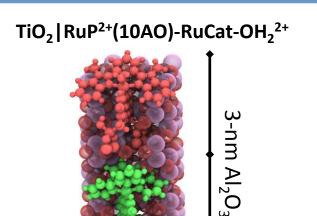

Water Splitting DSPEC: Maximize Efficiency, Stability Challenges, New Assembly Strategies

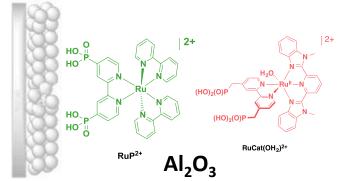
SOLAR FUELS

- Surface assembly, new strategies
- Surface stabilization
- Avoid losses from oxidized chromophores
- Control rates and interfacial dynamics
- Extend light absorption further into the visible
- Implement tandem configurations

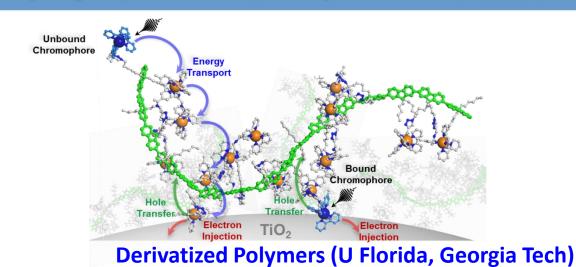
Water Oxidation Catalyst

Organic Dyes (Wee)





Chromophore-Catalyst Assemblies New Assembly Strategies (Ashford, Chem. Rev., 2015)



ALD "Mummy" Assemblies (Lapides)

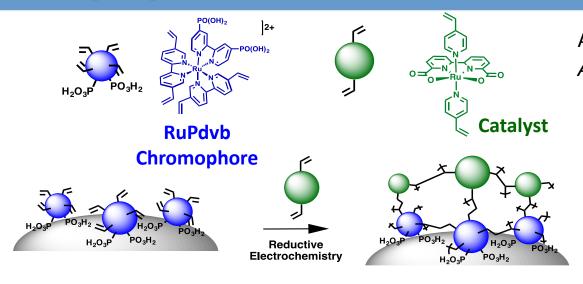
Polyfluorene

Triazole link

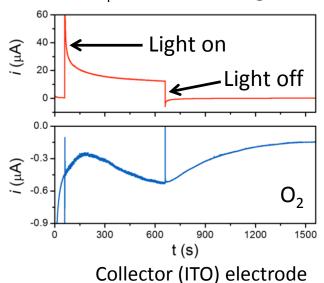
Pendant Ru(II)

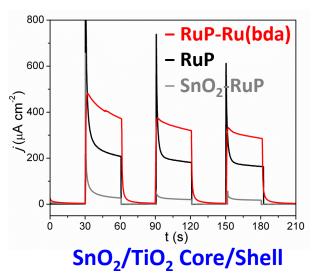
e Anchoring group

Intra-Cavity Electro-Assemblies (Fang)



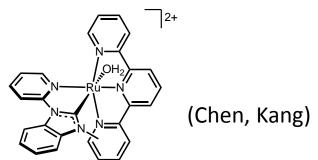
Electro-Assembly DSPEC TiO₂-RuP- Ru(bda)



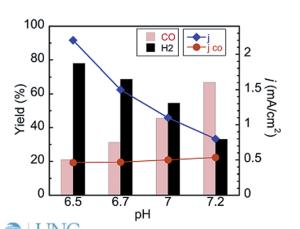

Ashford, Sherman et al. *ACIE*, **2015**

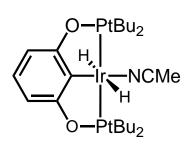
$0.1 \text{ M H}_2\text{PO}_4^{-}/\text{HPO}_4^{2-} \text{ pH 7; } 0.4 \text{ M NaClO}_4; \text{ AM1 White light 100 mW cm}^{-2}; \text{ E}_{\text{bias}} = -0.4 \text{V vs. SCE}$

-0.85 V vs. SCE

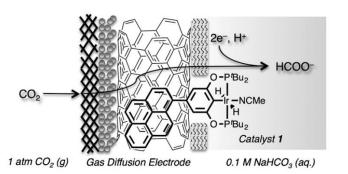


Electrocatalyzed CO₂ Reduction Selectivity, Aqueous, Rapid, Robust (Alex Miller)




Controlling Electrocatalytic CO₂ Reduction Selectivity In Water

- Ru catalysts reduce CO₂ to syn gas with tunable H₂:CO ratio
- Ir catalysts reduce CO₂ to **formate** with no H₂ or CO byproduct
- Nanoparticle film catalysts produce CO, formate, CH₄



Proc. Natl. Acad. Sci., **2012**, 109, 15606 Energy Environ. Sci., **2014**, 7, 4007 Chem. Commun., **2014**, 50, 335

J. Am. Chem. Soc., **2012**, 134, 5500 Chem. Sci. **2013**, 4, 3497

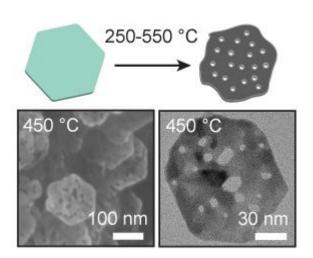
Continuous, large-scale formate production *Angew. Chem. Int. Ed.* **2014**, *53*, 8709

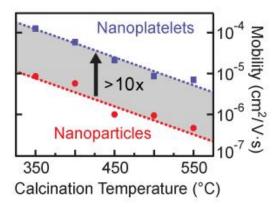
20) am

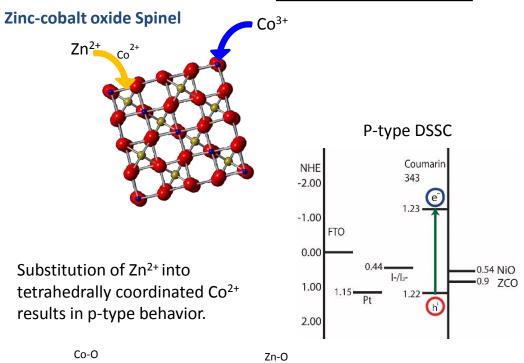
J. Am. Chem. Soc. **2014**, 136, 1734

Sn catalysts

(Zhang)




Photocathodes for CO₂ Reduction NiO and beyond NiO (Jim Cahoon)


Redesigned "2D" NiO

Improved Charge Transport and Device Performance

New cathode oxides

Mercado and Nozik

FTO

UNC Energy Frontier Research Center Solar Fuels

Office of

Science

SCIENTIFIC ACHIEVEMENTS

- Application of core/shell structures to water splitting
- Water oxidation catalysis
- Assembly based interfacial dynamics
- Selective reduction of CO₂ to formate or syngas
- 206 peer-reviewed publications (h-index 35) 65% co-authored by >1 senior investigator
- 24 patent applications
- World-class user facilities in catalysis, spectroscopy, photolysis, device fabrication, synthesis - staffed by Ph.D. research scientists

TRAINING THE ENERGY WORKFORCE OF THE FUTURE

- Trained or in training:
 - √ 60 postdoctoral fellows
 - √ 80 graduate students
 - √ 30 undergraduates
- 50 graduate degrees awarded
- > 120 careers in industry, academia, government, policy, public sector

U.S. DEPARTMENT OF

ENERGY

UNC EFRC MODULAR

SOLAR FUELS

MODULAR INTEGRATED TEAM-BASED RESEARCH

Tom Meyer Director, UNC

John Papanikolas Deputy Director, UNC

Jerry Meyer Deputy Director, UNC

UNC EFRC SOLAR FUELS

Synthesis (T. Meyer/Miller/Schanze*)

Catalysis

Brookhart
Glish
T. Meyer
Miller
Muckerman*
Murray
Schauer
Templeton

Assemblies

T. Meyer
Papanikolas
Reynolds*
<u>Schanze</u>*
Templeton
Waters

Interface Dynamics

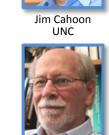
Cahoon Dempsey Kanai G. Meyer T. Meyer Moran Papanikolas

Photocathode |

Interfaces & Devices

(Papanikolas/Cahoon/G. Meyer)

Cahoon


Dempsey
Kanai
G. Meyer
T. Meyer
Nozik*
Papanikolas

Photoanode

Cahoon
Dempsey
Lopez
G. Meyer
T. Meyer
Moran
Nozik*
Papanikolas


Maurice Brookhart UNC

Jim Muckerman* Royce Murray
BNL UNC

Jillian Dempsey UNC

Art Nozik*
UC Boulder/NREL

Gary Glish UNC

John Reynolds* Georgia Tech

Yosuke Kanai

Kirk Schanze* U Florida

Rene Lopez UNC

Cindy Schauer UNC

Andy Moran UNC

Joe Templeton UNC

Marcey Waters UNC

Annual UNC EFRC Research Review with External Advisory Board - May 2014

