Copper(II) Catalysis of Water Oxidation

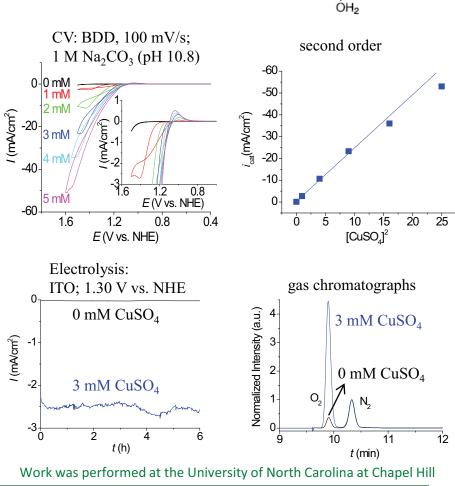
Scientific Achievement

We report here that simple Cu(II) salts are highly reactive as water oxidation electrocatalysts in neutral to weakly basic aqueous solutions concentrated in $CO_2/HCO_3^{-2}/CO_3^{-2}$.

Significance and Impact

Our observations are remarkable for the simple nature of the catalyst and solution conditions and the robust character of the catalysis.

Research Details


- The coordination environment offered by these buffer anions prevents precipitation of Cu(OH)₂ and CuCO₃, and appear to stabilize higher oxidation states of copper.
- The results of voltammetric measurements are consistent with water oxidation by Cu(II) by a second order pathway in 1 M Na₂CO₃ (pH \sim 10.8).
- The rate of water oxidation is especially notable with current densities of > 20 mA/cm² at 1.46 V vs. NHE at 3 mM Cu(II).
- The electrocatalysis was sustained for a long period of time with O₂ detected with a Faradaic efficiency of 97%.

Chen, Z. F.; Meyer, T. J. "Copper(II) catalysis of water oxidation." *Angewandte Chemie International Edition* **2012**, submitted.

 $K_{\rm sp}({\rm Cu}({\rm OH})_2) = 4.8 \quad 10^{-20}$ $K_{\rm sp}({\rm Cu}{\rm CO}_3) = 1.4 \quad 10^{-10}$

Meyer