

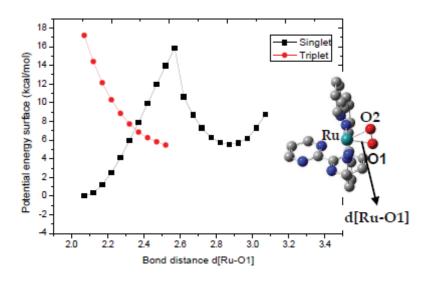
Catalytic Mechanism for Single-Site Water Oxidation Process: A Theoretical Study

Weitao Yang / Duke University

Collaborators: X. Hu, X. Lin, T. Meyer, J. Concepcion, Z. Chen, S. Liu

Achievement:

- The electronic spin states of ruthenium intermediates during the catalytic cycle are identified as well as the corresponding optimal geometries.
- Our pK_a and redox calculations for first two PCETs and following ET process from [Ru^{II}-OH₂]²⁺ to [Ru^{IV}=O]²⁺ and then to [Ru^V=O]³⁺ suggest that these processes can proceed readily in weak base or acidic conditions.
- To release O₂, the Ru compounds must achieve high spin state by spin-orbital couplings.



Significance:

- How water oxidation process can be catalyzed by single-site ruthenium complexes are important in solar fuels.
- Using several theoretical tools including our new QM/MM-MFEP approaches, we can characterize the entire catalytic cycle with atomistic details.
- Our studies should be helpful to design new catalysts based on other earth-abundant metals for solar fuels.

